Roadmap to Reliability

START

• Introduction and welcome [10]

• Understanding the polling devices [15]
 o The attendees will be anonymously polled to get their thoughts, experience, and opinion
 o Kick-off poll

• Big picture: What do we mean by “reliability improvement” and the “roadmap to reliability”? [25]
 o Asset management maturity
 o Defect elimination
 o Improved work practices and inventory/spares management
 o Condition based maintenance
 o Precision maintenance and operation
 o Human factors
 o Benchmarking and KPIs
 o Change management
 o Continuous improvement
 o Techniques: RCM, FMEA, PMO, RCFA

• The perils of reactive maintenance [10]

• What are the benefits of improving reliability? [30]
 o Financial
 ▪ Increase in production
 ▪ Reduction of costs
 o Safety and environmental
 o Job satisfaction

• Understanding criticality: an essential component [35]
 o Why do you need it
 o (Ensuring that you have an accurate Master Asset List)
 o Developing the Asset Criticality Ranking

BREAK

• Understanding failure modes [20]
 o Age related versus random failures
 o Common root causes of equipment (mechanical and electrical) failure

• Maintenance practices [20]
 o Run to failure
 o Interval-based
Condition based

- Reliability Centered Maintenance (RCM) overview [30]
 - The goals and basic procedure
 - Recommended approach
 - Determining the required maintenance practices
 - Overlap: PM Optimization, RCM, FMECA, RCFA and reliability improvement

- Reliability engineering overview [20]
 - MTBF and Weibull
 - Data quality – how reliable is your reliability data
 - To measure or to improve

LUNCH

- Defect elimination
 - Design and procurement [15]
 - Maintainability and reliability
 - Life cycle costs
 - Acceptance testing and screening [25]
 - Where do you get the standards
 - Transportation and storage [10]
 - Maintenance practices and precision skills
 - Is maintenance responsible for reliability? [15]
 - Precision maintenance detailed overview:
 - Precision alignment: belt and shaft [20]
 - Precision balancing: shop and in-situ [20]

BREAK

- Precision lubrication and contamination control [40]
- Looseness, clearances, soft foot, correct fastening/torque/tightening sequence [25]
- Resonance elimination [15]
 - Precision operation [30]
 - SOPs
 - Pump operation and BEP
 - Training and awareness
 - Operator driven reliability

END DAY ONE

START DAY TWO

- Condition Based Maintenance
 - Basic principles [10]
o Condition monitoring versus troubleshooting versus condition based maintenance versus condition improvement [15]
o Detailed technology overview
 ▪ Vibration analysis [45]
 ▪ Ultrasound: leak detection, ultrasound assisted greasing plus electrical, mechanical and process applications [25]
 ▪ Thermography (infrared analysis): electrical, mechanical and process applications [30]
 ▪ Oil analysis and wear particle analysis [35]

BREAK
 ▪ Induction motor voltage and current testing [20]
 ▪ Performance monitoring [15]
 ▪ Non Destructive Testing [20]
 ▪ Additional techniques [20]

o Program setup [20]
o Qualifications and certification [10]
o Condition monitoring and reliability [30]

LUNCH

• Implementing the reliability improvement initiative: alternative approaches [20]
 o Detailed RCM analysis
 o Interval-based maintenance
 o Condition based maintenance
 o Consultant driven program
 o Data driven program (and reliability engineering)
 o Internally driven program
 o “Stealth” method versus “leadership driven”

• Benchmarking [25]
 o Knowing your starting point
 o Gap analysis
 ▪ Identifying opportunities
 o Setting some goals

• Running a successful and sustainable program
 o Essential ingredients [40]
 ▪ Leadership
 • Senior management
 • Steering committees
 • Gaining plant-wide support
 ▪ Human factors
 ▪ Culture change
 ▪ Overcoming roadblocks
- Incentives
- Training

BREAK

- Roll-out strategy [40]
 - Auditing the current state
 - Plant walk-through
 - *Suggested* step-by-step implementation process
- Continuous improvement
 - Establishing and reporting KPIs [20]
 - Communicating results [15]
 - Root cause failure analysis and FRACAS [30]
 - Determining the root cause
 - Overview of techniques
 - Common sources of good information
 - Taking action to eliminate the root cause
- Why do so many reliability improvement (and condition monitoring) programs fail? [20]
 - Survey results
 - Solutions to common problems

FINISH

- Case studies:
 - Many short case studies will be presented during the workshop
 - We will also present numerous short video interviews with successful program managers

- On-line pre- and post-study:
 - To make the most of this learning opportunity you will be provided with an on-line iLearnReliability account (without charge)
 - For two weeks after the workshop you will be able to go through the self-paced, fully-narrated, interactive e-learning modules that use the same animations and simulations that are used in the workshop
 - These modules cover the same topics (and others that we don’t have time to discuss in detail)